Geometric group theory Problem sheet 2

Lent 2015

- 1. Prove that the free group F_2 contains a subgroup isomorphic to F_{∞} (where ∞ is countable).
- 2. Let Γ be a group with a finite generating set S. The growth function of the pair (Γ, S) is defined to be

$$\beta_{\Gamma,S}(n) = \#\{\gamma \in \Gamma \mid l_S(\gamma) \le n\}$$
.

- (a) State and prove a quasi-isometry invariance result for growth functions.
- (b) Compute (coarsely) the growth function of \mathbb{Z}^r for $r \in \mathbb{N}$.
- (c) Deduce that \mathbb{Z}^r is quasi-isometric to \mathbb{Z}^s if and only if r = s.
- 3. Let $\Gamma = \langle S \mid R \rangle$. The *conjugacy problem* asks for an algorithm that takes as input a pair of words $u, v \in S^*$ and determines whether or not the elements they represent in Γ are conjugate. Show that the conjugacy problem is solvable in the free group F_r (for $r < \infty$).
- 4. A group Γ is called *residually finite* if, for every $\gamma \in \Gamma \setminus 1$, there exists a homomorphism to a finite group $f:\Gamma \to Q$ such that $f(\gamma) \neq 1$. Prove that if Γ is finitely presented and residually finite then the word problem is solvable in Γ .
- 5. For each positive integer k, find a presentation of \mathbb{Z} with Dehn function $\delta(n) = kn$.
- 6. A retraction is a homomorphism of groups $r: G \to H$ with a right-inverse homomorphism $i: H \to G$ (i.e. $r \circ i = \mathrm{id}_H$). In this case, H is called a retract of G.
 - (a) Prove that if G is finitely presentable then H is also finitely presentable.

- (b) Prove that $\delta_H \leq \delta_G$.
- (c) For finitely presented groups Γ_1, Γ_2 , show that

$$\delta_{\Gamma_1 * \Gamma_2}(n) \simeq \max\{\delta_{\Gamma_1}(n), \delta_{\Gamma_2}(n)\}$$
.

(The group $\Gamma_1 * \Gamma_2$ is the free product of Γ_1 and Γ_2 . You may wish to use the normal form theorem for free products, which asserts that if $a_i \in \Gamma_1 \setminus 1$ and $b_i \in \Gamma_2 \setminus 1$ then the product $\prod_i a_i b_i \neq 1$.)

Addendum: Part (c) turns out to be equivalent to an open problem! However, you can do the question if you assume that δ_{Γ_1} and δ_{Γ_2} are super-additive, meaning that $\delta_{\Gamma_i}(m+n) \geq \delta_{\Gamma_i}(m) + \delta_{\Gamma_i}(n)$.

- 7. A presentation $\mathcal{P} \equiv \langle S \mid R \rangle$ is called *Dehn* if it has the following property: in every van Kampen diagram D over \mathcal{P} of positive area, there exists a 2-cell e so that $\partial e \cap \partial D$ contains an arc of length greater than half the length of ∂e . Show that if \mathcal{P} is Dehn then $\delta_{\mathcal{P}}$ is linear.
- 8. Compute $\delta_{\mathbb{Z}^r}$ up to coarse equivalence.
- 9. Consider the finitely presented group $B = \langle a, b \mid aba^{-1}b^{-2} \rangle$. For each n, exhibit a van Kampen diagram for the word

$$w_n = a^n b a^{-n} b a^n b^{-1} a^{-n} b^{-1} .$$

- 10. The purpose of this question is to prove that a group Γ that acts properly discontinuously and cocompactly but perhaps not freely on a simply connected 2-complex \widetilde{X} is finitely presented.
 - (a) Show that we may assume that, if a cell of \widetilde{X} is fixed set-wise by an element $\gamma \in \Gamma$, then it is fixed point-wise.
 - (b) Let \mathcal{F} be the set of finite subgroups of Γ that stabilize a vertex in \widetilde{X} . Prove that \mathcal{F} is a finite union of conjugacy classes of subgroups.
 - (c) Exhibit a compact, simply connected space \widetilde{Z} such that every subgroup in \mathcal{F} admits a free action on \widetilde{Z} .
 - (d) Describe a locally finite, simply connected cell complex \widetilde{Y} together with a free, cocompact Γ -action and a Γ -equivariant map $\widetilde{Y} \to \widetilde{X}$ such that every point pre-image is homeomorphic to \widetilde{Z} .